

Método alternativo para a determinação das formas de enxofre em carvões brasileiros

<u>Taísi D. Inácio^{1,3}</u>, Cristiane S. Abreu^{1,3}, Vera L. V. Fallavena^{1,2,3}, Carla M. N. Azevedo^{1,3}, Marçal J. R. Pires^{1,2,3} (orientador)

¹Faculdade de Química, ²Programa de Pós-graduação em Engenharia e Tecnologia de Materiais (PGETEMA) e ³Laboratório de Química Analítica Ambiental (LQAmb) da PUCRS

Introdução

Os teores de enxofre e de matéria mineral do carvão são importantes parâmetros de qualidade, uma vez que a utilização direta de carvões com elevados teores de cinzas ou enxofre causam sérios problemas tecnológicos e ao meio ambiente (Karaca e Ceylan, 1997). Devido a esses problemas são necessários métodos práticos, rápidos e confiáveis na sua determinação rotineira. As normas existentes para a determinação das formas de ocorrência do enxofre (pirítico, sulfático e orgânico) no carvão demandam tempo e consomem quantidade significativa de reagentes, gerando resíduos. Diante dessa problemática, um novo método de determinação é proposto utilizando peróxido de hidrogênio em meio ácido para determinar as formas de enxofre em carvões brasileiros.

Metodologia

As amostras de carvão utilizadas neste estudo são provenientes da Jazida Sul Catarinense, camadas Barro Branco (BBF) e Bonito (BO1, BO2, BO3) e da Jazida Leão-Butiá(CRE), camada M, e foram armazenadas em frascos fechados ao abrigo da luz. Trabalhou-se também com o Material de Referência Certificado (CAR) de carvão fornecido pela Rede Metrológica do RS. O método consiste no tratamento de uma amostra (10g) de carvão pulverizado (< 250 μm) com 200 mL H₂O₂ 10% em HCl 0,1 mol L⁻¹, sob agitação (145 rpm) durante até 240 min. A temperatura foi mantida a 30 ± 3°C e controlada por banho de gelo quando necessário. Em diferentes tempos de reação (15, 30, 60, 240 minutos) os teores de ferro e de sulfato são determinados nos extratos lixivados, separados por centrifugação/filtração, e os teores de enxofre total e pirítico são calculados. No carvão bruto

e nas amostras tratadas sólidas foram também realizadas análises imediata e elementar, e das formas de enxofre (sulfático e pirítico), utilizada a norma ASTM D 2492/1990 (1994). Da diferença entre os teores do enxofre total (analisador elementar), sulfático e pirítico obtêm-se o enxofre orgânico. Os extratos obtidos na lixiviação ácida foram caracterizados através da determinação dos teores de sulfato e de ferro. Os íons sulfato foram analisados utilizando um cromatógrafo iônico (Dionex DX-500), seguindo metodologia padrão (EPA, 1993). A determinação de ferro foi realizada por FAAS (espectrofotômetro Varian AA55), conforme procedimento normatizado (ASTM D 2492/1990, 1994).

Resultados

Observou-se que os extratos das amostras BBF, CRE, BO1 e BO3 apresentam 88, 93, 93 e 98% do ferro dissolvido oriundos da oxidação da pirita, respectivamente. Igualmente baixos teores de ferro não pirítico foram observados nos extratos (2 a 12%), exceto para a amostra CAR (30%). Esse resultado pode ser explicado pelo maior conteúdo de ferro não pirítico nesta amostra. As amostras que apresentam erros positivos indicam a dissolução de outros minerais de ferro, além da pirita. Os resultados indicam que é possível prever a concentração de enxofre pirítico presente em amostras típicas de carvões brasileiros a partir de medidas de concentração de ferro dissolvido nos extratos resultantes da peroxidação em meio ácido.

Os perfís de solubilização do sulfato são semelhantes aos verificados para a dissolução do ferro, com uma rápida transferência do enxofre para a fase líquida nos primeiros 60 minutos de reação. Verifica-se uma estabilização nos teores de sulfato após este tempo até o final da reação (240 min). Os níveis de sulfato dissolvido parecem estar diretamente relacionados aos teores de enxofre pirítico das amostras. Por exemplo, a amostra com o teor mais elevado de enxofre pirítico (BO2, 9,10%), apresentou a maior concentração mássica de sulfato dissolvido (322 mg g⁻¹). Por outro lado a amostra CAR, que contém o menor teor de enxofre pirítico (0,81%), originou somente 39 mg g⁻¹ de sulfato.

Uma possível correlação entre esses parâmetros (ferro e sulfato dissolvidos) foi testada visando validar o método. Observou-se uma boa correlação linear desses valores, com um R² 0,9687 e a relação [SO₄²]/[Fe] levemente superior a 2, indicando uma transformação quase total da pirita e uma elevada solubilização dos sulfatos. Esses resultados indicam a possibilidade da estimativa do teor de sulfato dissolvido a partir de medida de teor de ferro dissolvido ou vice-versa em base molar.

Conclusão

A peroxidação em meio de ácido clorídrico mostrou ser uma técnica que pode ser

aplicada na estimativa do teor de enxofre total e/ou do somatório dos teores de enxofre

pirítico mais sulfático, presentes em carvões brasileiros. A concentração de ferro total

aproxima-se da concentração máxima de ferro esperada para uma oxidação total da pirita a

sulfato, podendo assim ser usado para estimar o teor de enxofre pirítico. O erro máximo

percentual para teores de enxofre pirítico estimado é de 12%. A peroxidação também provoca

a solubilização de sulfatos, que juntamente com o sulfato vindo do enxofre pirítico, possibilita

estimar o teor de enxofre total a partir do sulfato total medido. É característico dos carvões

brasileiros baixos teores de enxofre sulfático e orgânico, estes não podem ser determinados

por este método. A diferença entre o enxofre total e o enxofre pirítico nos dá uma previsão

dessas duas formas.

Referências

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 2492 - 90. Standard Test Methods

for Forms of Sulfur in Coal. In: Annual Book of ASTM Standards, West Conshohocken, PA, 1996. v.05.05, p.

251.

KARACA, H; Ceylan K. Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen

peroxide. Fuel, v.50, p. 19-33, 1997.

SAIKIA, B. K.; Boruah, R.K; Gogoi, P.K. FT-IR and XRD analysis of coal from Makum coalfield of Assam.

J.Earth Syst. Sci. v 116, p.575-579, 2007.

Agradecimentos: Ao CNPq, à Rede Carvão Mineral, ao CEPAC e à SATC.